
How to Add a Webpage

Carolyn Anderson
last updated May 21, 2015

Some webpages for the Learn Mi’gmaq site are generated from the XML file. These
include lessons, units, and sections. If you want to add one of these, you should read the
How to Add a Lesson guide instead.

Other pages, like the About the Project page and the Acknowledgements page, need to be
written directly. Let’s say that you want to add a new page explaining some of the history
of the Mi’gmaq language. This page would need to be written as an HTML file.

To start, you will need a program to write files in. Your computer should have one for
free: Notepad on Windows or TextEdit on Mac.

You can also download a program online for free that will do some formatting to make it
easier for you, for instance, it may have something like spell-check, or auto-complete. I
have tried out two free programs that I found online: Sublime and Brackets. Brackets is
designed for web-programming, but Sublime has features for a wider range of
programming languages. Either will work for writing a new webpage.

Creating a new file

Start by opening a new file in whichever editing program you have chosen. You should
save the file in the main directory with a name that has no spaces and ends in .html.

For instance, we might call our History of the Language page history.html.

Picking a layout

Next, you will need to pick which layout to use with your page. A layout is some pre-
written code that is added to each page by Jekyll, the program that generates our site. For
instance, our layouts add the side menu, the top navigation bar, the copyright notice at the
bottom of the page, and link to the stylesheets that tell the computer how to display our
page. For more on Jekyll, see the How to Use Jekyll guide.

The two layouts that have been written for the Learn Mi’gmaq website so far are called
frame.html and lesson.html. Lesson.html is used for lessons, units, and sections, while
frame.html is used for everything else. You will probably want to use the frame layout on
any page you are writing yourself.

The first thing in your new HTML document should be a markup telling Jekyll which
layout to apply. Jekyll markups begin and end with three hyphens to tell Jekyll to start
and stop reading. Then, you will tell Jekyll which layout to use:

layout: frame

(I will be showing what is new at each step in green.)

Setting other variables

You can also define other variables to use on the page in the Jekyll markup. Variables are
useful for storing a value that you want to use many times in the same page. If you have a
value used in multiple places that you think you might want to change something later,
you can store it in a variable, and then you will only need to change the variable
definition, instead of tracking down every place you used the value.

One variable that should be set on every page is the page title. This is important because
the layout uses the page variable. This allows the layout to apply to pages with many
different titles.

layout: frame
title: About the Mi’gmaq Language

You can use a variable within the page by writing {{ page.name }}, where name is what
you called the variable in the markup. There must be a space between the opening curly
brackets and the variable, and between the variable and the closing curly brackets.

For instance, you can use the title variable like so:

The title of this page is {{ page.title }}.

The line would appear on the website like this:

The title of this page is About the Mi’gmaq Language.

Title

Now you need to decide what should appear on your page. Somewhere near the top of
your page, you should place the title of the page, using the title variable you have
defined.

The page title should be large so that it is easy to read. Elsewhere on the site, titles have
been placed in <h1> tags. The h is for heading, while the number indicates the size.
Headings come in sizes 1-6, where 1 is the largest.

layout: frame
title: About the Mi’gmaq Language

<h1>{{ page.title }}</h1>

All HTML elements begin with an opening tag, indicating what kind of element it is, and
end with a closing tag. In the example above, for instance, the <h1> opens the heading
and the </h1> closes it.

CSS

I said above that the number part of the heading tag indicates what size it is. In fact, the
numbers only indicate the relative size: that is, a 1 is bigger than a 6.

The actual sizes are defined in the CSS files linked to in our layouts. CSS (Cascading
Style Sheets) is what controls a lot of the appearance of the site. CSS defines what font
sizes, colors, borders, and other styles web browsers use to display our pages.

There are three important CSS files for the Learn Mi’gmaq site.

The bootstrap.css file contains the Bootstrap styles we use (see below).

The yeti.css file is a Bootswatch theme that our site uses. This gives our site extra-nice
fonts and other things.

The custom.css file is our own CSS written for the Learn Mi’gmaq site specifically. If
you ever need to modify or add CSS, it should be done in the custom.css file.

What happens if you write conflicting rules in two files? The last file to be linked to
takes precedent. For our system, we link to bootstrap.css first, then yeti.css, then
custom.css, because we want our own styles to be able to override the Bootstrap and
Bootswatch styles.

Bootstrap

Bootstrap is a framework for web programming. We use it on the Learn Mi’gmaq site
because it is useful in making things display nicely on different screen sizes. It is also a
very popular tool, so it is easy to find examples online for various things you might like
to do.

Bootstrap is mainly a CSS file defining many different styles. This CSS file is linked to
in our layouts, so that each page can access it.

For example, one useful CSS class that Bootstrap defines is columns. HTML only defines
boxes (<div>s): to make columns, you used to have to manually adjust the widths of
different boxes.

Bootstrap, however, gives us a grid system, with different column sizes that we can use.
It divides the page into 12 columns, and you can specify that a div should take up from
anywhere from one to twelve of them, by adding a column class to its tag:

<div class="col-md-9">

The col stands for column. The 9 specifies that the column should take up 9 out of 12
columns of the page (3/4ths of the page). The md stands for medium--- this column will
be size 9/12 on screen-sizes up to medium size.

If the screen size is small or extra-small (think tablets and smartphones), then the page
will stop using the grid system, and the <div> will take over the whole width of the page.

For more on the Bootstrap grid system, see this reference page:
http://getbootstrap.com/examples/grid/.

Content Body

I can’t spell out instructions for every kind of thing you might like to put on the page. But
I can give some advice for how to learn to write webpages.

First, look at existing pages. You may be able to copy the copy from them, and just
change the text inside.

Second, there are a lot of examples and templates of how to use Bootstrap online. It’s
perfectly fine to borrow code you find online, and you can often get good help this way.

Third, if there’s something you see on another website that you would like to have on the
Learn Mi’gmaq website, you may be able to use your browser’s Developer Tools to look
at their code.

Developer Tools

Many web browsers have Developer Tools to help website programmers. These tools
allow you to look at the code behind a website. They even allow you to modify the code
to see what happens.

On Google Chrome, you can find these tools by going to the menu, finding More Tools,
and clicking on Developer Tools, or by control+clicking on a page and choosing Inspect
Element.

Figure 1. Finding Developer Tools in Google Chrome.

On Safari, you display the Safari Develop menu in your menu bar by choosing Safari >
Preferences, clicking Advanced, and selecting the checkbox for Safari Develop:

Figure 2. Finding Developer Tools in Safari.

Adding Links

To make an HTML element go to another page on a click, or to display content from
another file, like an image or an audio file, you will need to create a link.

First, you’ll need to know what folder the file you are linking is in, or the url of the
outside website you want to link to.

For an image, this will probably be img. For an audio file, this will probably be audio.
For a main page, there probably won’t be a folder, while lessons, units, and sections are
stored in separate folders.

If you want to link to another webpage when the user clicks, you will wrap the element in
an <a> element:

<p>Click here to visit Mi’gmaq.org!</p>

In this example, you are linking to an outside website. If you want to link to a page in the
Learn Mi’gmaq website, the address is a little more complicated.

<p>Click here to go to the first section!</p>

The first part is a variable defining the base URL for the site. The second part is the
folder that contains the file (none if the file is in the main folder). The third part is the
name of the file. Each part should be separated by a slash.

Adding Images

To add an image to a webpage, you should first place the image file in the img folder.
Next, you’ll need to write the code to include it on the page. There are many ways to do
this depending on the style you want, but the way it has been done many times on the
website so far is below:

Make sure you get the file type right at the end: it may be a JPEG, GIF, or PNG image,
and it won’t display if you get it wrong.

(Images are an exception to the ending tag rule: they’re a stand-alone element and don’t
need a closing tag.)

Linking to Your File

You will also need to link to your file, so that website users can find it. The most likely
place to add it is to the side menu.

To add your file to the side menu, you will need to edit the sidenav.xsl file. It is in the
data folder. Open it in your editing program.

You will need to find an example in sidenav.xsl of how to link a file, duplicate it, and
change the name and link to those of your file.

For instance, if you want your file to appear on the menu between Resources and
Wela’lieg, find those names in sidenav.xsl.

Figure 3. Finding an example in sidenav.xsl.

Next, copy and paste the Resources .

Resources
Resources
Wela'lieg

Then edit the link and the name to match your file.

Resources
About the Mi’gmaq
Language
Wela'lieg

Last, you will need to re-run the code to make the side menu. You will need to run the
following code in the command line from the main folder.

touch data/master.xml; make

The side menu should automatically update with the new link to your page.

